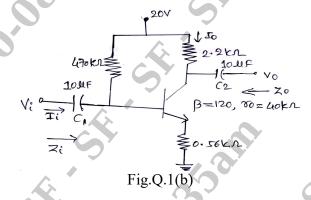
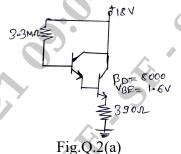


USN							Adyar, Mangalore	15EC32
		l .				l .		


Third Semester B.E. Degree Examination, July/August 2021 Analog Electronics

Time: 3 hrs. Max. Marks: 80


Note: Answer any FIVE full questions.

- a. Derive an expression for input impedance, output impedance, voltage gain for commonemitter fixed bias amplifier using re model. (08 Marks)
 - b. Calculate r_e, z_i, z_o, A_v for the network shown in Fig.Q.1(b) for un bypassed circuit.

(08 Marks)

2 a. List the advantages of darlington transistor, calculate the dc bias voltages and currents for the circuit shown in Fig.Q.2(a). (06 Marks)

- b. Derive an expression for Z_i , Z_o , A_v and A_i of two port system with hybrid equivalent circuit. (10 Marks)
- 3 a. Explain with characteristics working principle of JFET n-channel. (06 Marks)
 - b. Explain n-channel MOSFET operation. (05 Marks)
 - c. Explain enhancement type MOSFET n-channel. (05 Marks)
- 4 a. Derive Z_i, Z_o, A_v for small signal fixed bias JFET amplifier AC analysis. (10 Marks)
 - b. Derive Z_i for JFET common gate configuration circuit. (06 Marks)
- 5 a. Derive an expression for low frequency response of BJT amplifier to determine the effect of C_S, C_C and C_E. (12 Marks)
 - b. The input power to a device is 10,000W at a voltage of 1000V. The output power is 500W and the output impedance is 20Ω . Calculate power gain, voltage gain in decibels. (04 Marks)

- 6 a. Describe the effect of Miller's capacitance and derive input and output Miller capacitance.
 (08 Marks)
 - b. Derive an expression of low frequency FET response amplifier circuit for effect of C_G and C_C.
 (08 Marks)
- 7 a. List the advantage of negative feedback. (04 Marks)
 - b. Explain effect of negative feed back on bandwidth. (04 Marks)
 - c. Derive Z_{if}, A_f for the general voltage-series feedback connection type. (08 Marks)
- 8 a. Explain Wein bridge oscillator with circuit diagram. (06 Marks)
 - b. Explain UJT oscillator circuit operation. (08 Marks)
 - c. Define Barkhausen criterion. (02 Marks)
- 9 a. Explain types of power amplifiers. (06 Marks)
 - b. Explain with circuit diagram operation of push-pull amplifier. (08 Marks)
 - c. Define distortion in amplifier. (02 Marks)
- 10 a. Define voltage regulation. (02 Marks)
 - b. Explain shunt connected transistor voltage regulator circuit. (06 Marks)
 - c. Calculate the output voltage and zener current for the circuit shown in Fig.Q.10(c) with $R_L = 1 \text{K}\Omega$. (08 Marks)

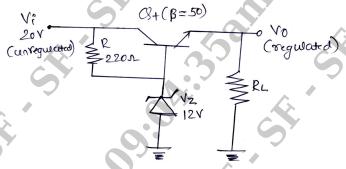


Fig.O.10(c)